skip to main content


Search for: All records

Creators/Authors contains: "Hettiyadura, Anusha P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Iron (Fe) is ubiquitous in nature and found as Fe II or Fe III in minerals or as dissolved ions Fe 2+ or Fe 3+ in aqueous systems. The interactions of soluble Fe have important implications for fresh water and marine biogeochemical cycles, which have impacts on global terrestrial and atmospheric environments. Upon dissolution of Fe III into natural aquatic systems, organic carboxylic acids efficiently chelate Fe III to form [Fe III –carboxylate] 2+ complexes that undergo a wide range of photochemistry-induced radical reactions. The chemical composition and photochemical transformations of these mixtures are largely unknown, making it challenging to estimate their environmental impact. To investigate the photochemical process of Fe III –carboxylates at the molecular level, we conduct a comprehensive experimental study employing UV-visible spectroscopy, liquid chromatography coupled to photodiode array and high-resolution mass spectrometry detection, and oil immersion flow microscopy. In this study, aqueous solutions of Fe III –citrate were photolyzed under 365 nm light in an experimental setup with an apparent quantum yield of ( φ ) ∼0.02, followed by chemical analyses of reacted mixtures withdrawn at increment time intervals of the experiment. The apparent photochemical reaction kinetics of Fe 3+ –citrates (aq) were expressed as two generalized consecutive reactions of with the experimental rate constants of j 1 ∼ 0.12 min −1 and j 2 ∼ 0.05 min −1 , respectively. Molecular characterization results indicate that R and I consist of both water-soluble organic and Fe–organic species, while P compounds are a mixture of water-soluble and colloidal materials. The latter were identified as Fe–carbonaceous colloids formed at long photolysis times. The carbonaceous content of these colloids was identified as unsaturated organic species with low oxygen content and carbon with a reduced oxidation state, indicative of their plausible radical recombination mechanism under oxygen-deprived conditions typical for the extensively photolyzed mixtures. Based on the molecular characterization results, we discuss the comprehensive reaction mechanism of Fe III –citrate photochemistry and report on the formation of previously unexplored colloidal reaction products, which may contribute to atmospheric and terrestrial light-absorbing materials in aquatic environments. 
    more » « less
  2. null (Ed.)
    Guaiacyl acetone (GA) is a phenolic carbonyl emitted in significant quantities by wood combustion that undergoes rapid aqueous-phase oxidation to produce aqueous secondary organic aerosol (aqSOA). We investigate the photosensitized oxidation of GA by an organic triplet excited state (3C*) and the formation and aging of the resulting aqSOA in wood smoke-influenced fog/cloud water. The chemical transformations of the aqSOA were characterized in situ using a high-resolution time-of-flight aerosol mass spectrometer. Additionally, aqSOA samples collected over different time periods were analyzed using high-performance liquid chromatography coupled with a photodiode array detector and a high-resolution Orbitrap mass spectrometer (HPLC-PDA-HRMS) to provide details on the molecular composition and optical properties of brown carbon (BrC) chromophores. Our results show efficient formation of aqSOA from GA, with an average mass yield around 80%. The composition and BrC properties of the aqSOA changed significantly over the course of reaction. Three generations of aqSOA products were identified via Positive Matrix Factorization analysis of the AMS data. Oligomerization and functionalization dominated the production of the first-generation aqSOA, whereas fragmentation and ring-opening reactions controlled the formation of more oxidized second- and third-generation products. Significant formation of BrC was observed in the early stages of the photoreaction, while organic acids were produced throughout the experiment. High-molecular-weight molecules (m/z > 180) with high aromaticity were identified via HPLC-PDA-HRMS and were found to account for a majority of the UV-vis absorption of the aqSOA. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Molecular composition, viscosity, and liquid–liquid phase separation (LLPS) were investigated for secondary organic aerosol (SOA) derived from synthetic mixtures of volatile organic compounds (VOCs) representing emission profiles for Scots pine trees under healthy and aphid-herbivory stress conditions. Model “healthy plant SOA” and “stressed plant SOA” were generated in a 5 m 3 environmental smog chamber by photooxidation of the mixtures at 50% relative humidity (RH). SOA from photooxidation of α-pinene was also prepared for comparison. Molecular composition was determined with high resolution mass spectrometry, viscosity was determined with the poke-flow technique, and liquid–liquid phase separation was investigated with optical microscopy. The stressed plant SOA had increased abundance of higher molecular weight species, reflecting a greater fraction of sesquiterpenes in the stressed VOC mixture compared to the healthy plant VOC mixture. LLPS occurred in both the healthy and stressed plant SOA; however, stressed plant SOA exhibited phase separation over a broader humidity range than healthy plant SOA, with LLPS persisting down to 23 ± 11% RH. At RH ≤25%, both stressed and healthy plant SOA viscosity exceeded 10 8 Pa s, a value similar to that of tar pitch. At 40% and 50% RH, stressed plant SOA had the highest viscosity, followed by healthy plant SOA and then α-pinene SOA in descending order. The observed peak abundances in the mass spectra were also used to estimate the SOA viscosity as a function of RH and volatility. The predicted viscosity of the healthy plant SOA was lower than that of the stressed plant SOA driven by both the higher glass transition temperatures and lower hygroscopicity of the organic molecules making up stressed plant SOA. These findings suggest that plant stress influences the physicochemical properties of biogenic SOA. Furthermore, a complex mixture of VOCs resulted in a higher SOA viscosity compared to SOA generated from α-pinene alone at ≥25% RH, highlighting the importance of studying properties of SOA generated from more realistic multi-component VOC mixtures. 
    more » « less